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Abstract 

Motor imagery (MI) has emerged as an individual factor that may modulate the effects of attentional focus on motor 
skill performance. In this study, we investigated whether global MI, as well as its components (i.e., kinesthetic MI, inter-
nal visual MI, and external visual MI) moderate the effect of attentional focus on performance in a group of ninety-two 
young adult novice air-pistol shooters (age: M = 21.87, SD = 2.54). After completing the movement imagery ques-
tionnaire-3 (MIQ-3), participants were asked to complete a pistol shooting experiment in three different attentional 
focus conditions: (1) No focus instruction condition (control condition with no verbal instruction) (2) an internal focus 
instruction condition, and (3) an external focus condition. Shot accuracy, performance time, and aiming trace speed 
(i.e., stability of hold or weapon stability) were measured as the performance variables. Results revealed that shot 
accuracy was significantly poorer during internal relative to control focus condition. In addition, performance time 
was significantly higher during external relative to both control and internal condition. However, neither global MI, 
nor its subscales, moderated the effects of attentional focus on performance. This study supports the importance 
of attentional focus for perceptual and motor performance, yet global MI and its modalities/perspectives did not 
moderate pistol shooting performance. This study suggests that perception and action are cognitively controlled by 
attentional mechanisms, but not motor imagery. Future research with complementary assessment modalities is war-
ranted to extend the present findings.
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Background
Individuals perform motor tasks with differing levels of 
attention. Traditional views considered attention as a 
passive spotlight or gatekeeper, acting prior to percep-
tual processing to merely filter out undesirable inputs 
in favor of others (i.e., it does not affect cognitive con-
trol of perception) [1–6]. In contrast, attention currently 
is viewed as a dynamic mechanism that actively modu-
lates cognitive control of perceptual computations in 
almost all stages or levels of processing [7–10], see also 
[11–14]. At the neural level, studies suggest that attention 
not only modulates activity of sensory neurons in vari-
ous ways [15, 16], but contributes to ’hypothesis testing’ 
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by making predictions about sensory information that 
should be encoded by lower neuronal levels [13, 17]. 
Behavioral studies also show that attention modulates 
perceptual and motor aspects of human behavior such as 
speed, reaction time, and performance accuracy [18]. A 
large number of attentional focus studies in the field of 
sport science and rehabilitation show that an external 
focus (i.e., focusing on the environmental task-relevant 
information outside of the performer’s body) enhances 
performance compared to an internal focus (i.e., focusing 
on the body or its movements) in a variety of motor tasks 
[19, 20]. For instance, an external focus improved perfor-
mance accuracy and reduced pre-movement time relative 
to an internal focus during an isometric force production 
task [21]. These findings therefore may provide support 
for the role of attention in cognitive control of percep-
tion and its impact on motor outcomes. The constrained 
action hypothesis, as the most widely accepted theoreti-
cal explanation for external attentional focus effects, sug-
gests that, unlike an internal focus that elicits controlled 
cognitive processing and impedes performance, an exter-
nal focus enhances motor skill performance by invoking 
automatic processing that is characterized by faster and 
more reflexive adjustments [22].

Aside from attentional focus, mental imagery is 
another cognitive mechanism that may affect individu-
als’ perceptual-motor performance. Given the men-
tal imagery definition as “representations … of sensory 
information without a direct external stimulus” [23] or 
perceptual processing, in the absence of immediate sen-
sory input from a relevant sense-modality [24, 25], some 
researchers suggest that mental imagery has a criti-
cal role in cognitive control of perception [11]. Studies 
show that pre-cuing effects (e.g., increased visual search 
time) occur in the absence of any physical stimuli (i.e., it 
is not triggered by corresponding sensory stimulation) 
and it has been suggested that perception is indeed cog-
nitively controlled by means of mental imagery rather 
than attention [11]. In other words, the argument is 
that individuals’ ability in creating mental images is the 
main modulator of perception. In the literature, these 
initial mental images have been considered as a type of 
attention known as preparatory attention (also known 
as attentional templet, attentional set, or search image) 
[26, 27]. Preparatory attention seems to be a phase in 
perception in which mental images of a given object are 
created in the sensory cortices (e.g., visual cortex) prior 
to presence of physical stimuli [27]. Furthermore, these 
initial mental images have identical, but reverse, percep-
tual processing path than sensory (e.g., visual) perception 
[28]. That is, while sensory perception involves a bottom-
up neural network path from visual to frontal cortex, 
mental imagery involves a top-down direction from the 

frontal cortex to sensory areas (e.g., visual cortex). There-
fore, attention and mental imagery, although mainly 
studied separately in sport science and rehabilitation, 
are closely inter-connected factors. To this extent, recent 
works suggest that mental imagery should be applied to 
attention [29] as both of them involve cognitive [30] and 
perceptual processes [28, 31] and share common neuro-
cognitive circuits with perception [32, 33]. Furthermore, 
it seems that mental imagery is dependent upon atten-
tional resources [34] and conversely, mental imagery 
may also impact attention [35]. Based on these findings, 
it seems quite reasonable to assume that mental imagery 
ability or individual differences in creating mental images 
modulates perceptual and motor aspects of performance 
during different attentional focus conditions. From a 
practical perspective, gaining more understanding in 
this regard would help practitioners to decide whether 
and how mental imagery should be applied to attentional 
focus strategies to further enhance perceptual and motor 
aspects of individuals’ performance.

A number of previous works have attempted to pro-
vide evidence regarding the modulating roles of motor 
imagery (MI: a type of mental imagery that is character-
ized by mentally imagining an action without any overt 
physical execution) [36] on motor performance and 
learning under different attentional focus conditions (i.e., 
internal versus external focus). In particular, MI modali-
ties (i.e., kinesthetic MI: mentally ‘sensing’ proprioceptive 
or somatosensory aspects of movements, and visual MI: 
mentally ‘seeing’ different aspects related to performance 
such as distance and size) [37], and MI perspectives (i.e., 
internal visual imagery perspective: seeing from first-
person perspective, and external visual imagery perspec-
tive: seeing from a third-person perspective) [37] during 
different attentional focus conditions have been investi-
gated. Indeed, MI significantly modulates the effects of 
attentional focus during performance of different fine and 
gross motor tasks including trajectory tracing tasks, dart 
throwing, overhand ball throwing, and balance control 
[38–41]. Further investigations nevertheless are required 
for several reasons. Thus far, studies have yielded incon-
sistent results regarding the role of MI on motor perfor-
mance and/or learning during different attentional focus 
conditions. In individuals with higher kinesthetic MI, an 
internal focus facilitated visuomotor performance (trac-
ing a circular trajectory with a mouse-controlled cursor) 
and learning relative to an external focus, whereas indi-
viduals with higher visual MI benefitted from an external 
relative to an internal focus [38, 39, 42, 43]. Other studies 
however have failed to observe that kinesthetic MI facili-
tates performance and learning during any attentional 
focus condition [41, 44]. In addition, studies have mainly 
used relatively simple tasks including computer-based 
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visuomotor tasks with a mouse (e.g., circle-tracing) [38, 
42, 43] and dart throwing [44]. Therefore, there is a need 
to understand if MI modulates attentional focus effects 
in novices performing inherently more complex tasks 
(i.e., with relatively high index of difficulty). Further-
more, most of these works have investigated MI modali-
ties (kinesthetic, vs. visual MI) without considering if MI 
perspectives (internal visual MI vs. external visual MI) 
have potential unique contributions to outcomes. To the 
best of our knowledge, only one recent study in children 
distinguished between MI perspectives (Bahmani et  al. 
2021), showing that while high levels of kinesthetic MI 
deteriorated overhand ball throwing learning in children 
adopting an external focus, external visual MI dominance 
resulted in superior motor learning for children adopting 
an external focus [41], suggesting that MI perspectives 
may also differently modulate attentional focus effects 
on motor performance. Finally, studies have focused on 
performance accuracy and there is little information 
about how attentional focus and MI interact to affect per-
ceptual processing and movement time. In the present 
study, we sought to investigate whether MI modulates 
perceptual and motor functions under different atten-
tional focus conditions. To determine whether percep-
tion is cognitively controlled by MI or attentional focus, 
and also given the existence of some inconsistencies 
regarding the role of kinesthetic MI on attentional focus 
effects, we employed additional tasks and outcome vari-
ables to complement traditional performance indicators 
related to end-point accuracy. To this end, we measured 
performance time, aiming point stability (i.e., aiming 
trace speed), and performance accuracy during shooting 
performance of a group of young novice 10-m air-pistol 
shooters.

Method
Participants
Ninety-two young adult university students (M 
age = 21.84 ± 2.25 years; 29 females) with normal or 
corrected to normal vision, and with no self-reported 
musculoskeletal or postural disorders voluntarily par-
ticipated in the study. Of note, a few incomplete data-
sets were excluded from the final analyses due to general 
optical system failure.1 All participants were novice (i.e., 

had no previous experience with the task) and naïve to 
the purpose of the study. The study was approved by 
Baghiatallah University of Medical Sciences review board 
(approval code: IR.BMSU.REC.1399.337).

Imagery assessment

Movement Imagery Questionnaire‑3 (MIQ‑3)

The MIQ-3 is a 12-item questionnaire [45] to measure 
individuals’ ability (i.e., ease or difficulty) of generating 
mental imagery for four movements (knee lift, jumping, 
arm movement, and toe touch) via kinesthetic MI, inter-
nal visual MI, and external visual MI. The MIQ-3 asks 
participants to physically perform each movement first, 
then mentally imagine each movement. Participants were 
asked to rate each movement on a 7-point Likert scale 
from 1 (very hard to see/feel) to 7 (very easy to see/feel). 
Therefore, the maximum sum score that one could obtain 
in each subscale is 28.

Apparatus and task
The participants were asked to shoot an air-pistol as 
accurately and as quickly as possible at an electronic tar-
get 10  m away in an indoor environment. The SCATT 
shooting system (SCATT Co., Russia) was used to quan-
tify pistol shooting performance, congruent with prior 
work [46]. The SCATT system records the location of 
shots in two-dimensional space as a function of time 
throughout each shooting trial. This is accomplished 
using multiple optical camera devices, including a barrel-
mounted light emitting and sensing unit with a reflective 
target border enabling the position of the aiming point to 
be recorded. The location of each shot was recorded as 
the position of the aiming point on the target at the time 
of the trigger pull, which was detected upon dry firing via 
a small microphone attached to the pistol. The system is 
comprised of a wired optical unit fixed on the pistol bar-
rel and connected to a PC that automatically recorded all 
outcome variables. For the present study, we used accu-
racy, performance time, and aiming trace speed as our 
dependent/outcome (i.e., performance) variables of inter-
est. Accuracy was determined by the position of the aim-
ing point on the target at the time of trigger pull – two 
dimensional coordinates were converted to a ‘score’ via a 
series of concentric circles. A shot hitting the ‘bulls-eye’ 
of the target scored 10.9, the maximum possible score, 
with depreciating scores for each subsequent surround-
ing circle (the lowest possible score was ‘0’ if the shot 
missed the target entirely). Performance time was quan-
tified as the time from lifting the gun to initiation of the 
trigger pull (in ms) and aiming trace speed was defined 

1  While 92 participants completed the study, accuracy, performance time, and 
aiming trace speed data of some participants were incomplete for technical 
reasons. Specifically, shooting accuracy data from 6 participants (2 males, and 
4 females) was not provided by the SCATT system (optical cameras failed to 
track and record aiming point, precluding system/CPU calculation of accu-
racy relative to concentric circles). Likewise, the SCATT system failed to 
provide performance time and aiming trace speed data from 4 additional par-
ticipants (3 males, and 1 female) for the same data acquisition technical limi-
tations (general optical camera system failure). Consequently, the total sample 
size reduced to 86, 82, and 82 for accuracy, performance time, and aiming 
trace speed, respectively.
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as the speed of pistol barrel (stability of hold of weapon 
stability) during the last second (mm/sec) [47, 48].

Procedure
Following completion of the MIQ-3, participants began 
the shooting task. After a short familiarization period, 
participants were asked to shoot at the target in three dif-
ferent attentional focus conditions: (1) control condition, 
(2) IF, and (3) EF. Participants completed their shooting 
performance under control (no focus instruction) con-
ditions first, then ordering of internal and EF conditions 
was counterbalanced between participants. Similar to 
previous attentional focus studies, we issued participants 
the control focus condition first, followed by the coun-
terbalancing of attentional focus conditions, to ensure 
one condition could be used as a stable control that was 
not biased by previous attentional focus instruction (i.e., 
eliminate order effects for baseline performance, only) 
[49, 50]. While order effects may have reduced control 
task performance or improved internal or external focus 
performance (i.e., less ‘practice’ time given control task 
always performed first), the total number of trials for the 
entire experiment was relatively small, thus minimizing 
the potential for order effects in any condition [49]. Inter-
nal and EF instructions used in the current study were 
similar to previously published work on shooting perfor-
mance that has demonstrated attentional focus effects 
[51]. In the IF condition participants were instructed to 
“focus on keeping your hand steady” and in the EF condi-
tion participants were instructed to “focus on keeping the 
gun steady.” In addition to attentional focus instructions, 
participants were also informed that they needed to com-
plete each trial as accurately and as quickly as possible 
after seeing an optical signal. Participants completed 10 
trials in each attentional focus condition, and partici-
pants’ scores in each condition were averaged to obtain 
total score of each condition.

Data analysis
First, repeated measure analyses of variance were per-
formed to investigate if shot accuracy was different 
among the attentional focus conditions. Similar analyses 
were done for performance time and aiming trace speed 
between attentional focus conditions. An alpha level of 
p < .05 was set a priori, and post-hoc analyses were per-
formed using Bonferroni adjustments as appropriate. In 
addition, we ran simple regression analyses to investigate 
potential associations between each MI measure and 
each air-pistol shooting performance measure in differ-
ent attentional focus conditions (i.e., between KMI and 
performance accuracy, between KMI and performance 
time, between KMI and aiming trace speed, between 
internal visual MI and performance accuracy, and so 

forth). Also, the association between performance time 
and shot accuracy, and between aiming trace speed and 
shot accuracy during each attentional focus condition 
were examined to help interpret findings. Finally, using 
MEMORE process macro [52], we ran separate simple 
model repeated measures analyses (see Montoya 2019) to 
investigate if each MIQ-3 score (i.e., global MI, internal 
visual MI, external visual MI, and kinesthetic MI) mod-
erated performance during different attentional foci (i.e., 
during internal vs. control condition, external vs. control, 
and internal vs. external focus). Analyses were done for 
performance accuracy, performance time, and aiming 
trace speed that resulted in 12 separate simple model 
repeated measure analyses (4 MI measures: global MI, 
internal visual MI, external visual MI, and kinesthetic MI 
by 3 pair of attentional focus comparisons: internal focus 
vs. control, external focus vs. control, and internal focus 
vs. external focus). In addition to these primary analy-
ses, we performed a secondary data analysis using motor 
imagery dominance to enhance reader interpretation (see 
Additional file 1). 

Results
Descriptive statistics of participants’ internal visual MI, 
external visual MI, and kinesthetic MI scores are shown 
in Table 1.

Repeated measures analysis of variance
Results indicated a significant difference in participants’ 
performance accuracy between attentional focus con-
ditions (F (1, 85) = 4.45, p = .015, η = 0.046). Pairwise 
comparisons using Bonferroni adjustments revealed 
that while accuracy during external focus (M = 4.30, 
SD = 1.82) was not significantly different than other 
attentional focus conditions, participants were more 
accurate during control (M = 4.68, SD = 1.82) relative to 
internal focus (M = 4.19, SD = 1.68) condition (p = .017). 
Performance time was different between conditions (F 
(1, 81) = 21.47, p = .019, η = 0.21). Pairwise comparisons 
revealed that participants had higher performance time 
during external (M = 3.38  s, SD = 1.77) relative to both 
control (M = 2.46  s, SD = 1.15; p < .001) and internal 
focus (M = 2.78 s, SD = 1.27; p = .001), and performance 

Table 1  Descriptive statistics of participants’ internal visual MI, 
external visual MI, and kinesthetic MI scores

Mean ± SD Minimum Maximum

Internal visual MI 5.81 ± 0.78 3.5 7

External visual MI 5.81 ± 0.0.75 4 7

Kinesthetic MI 5.87 ± 0.80 3 7

Total MI score 5.83 ± 0.69 4 7
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time during internal focus was also significantly higher 
than during the control focus condition (p = .03). Finally, 
the effect of attentional focus conditions on aiming 
trace speed was significant (F (1, 81) = 3.38, p = .046, 
η = 0.041), although pairwise comparisons failed to iden-
tify the location of effect. Mean and standard error of 
shot accuracy, performance time, and aiming trace speed 
during different attentional focus conditions have been 
shown in Figs. 1, 2, and 3, respectively.

Simple linear regression analyses
There were no associations between MI total score or 
its subscales with shot accuracy during any focus condi-
tions (control: Total MI score p = .38, internal visual MI 
p = .35, external visual MI p = .81, kinesthetic MI p = .88; 
internal focus: Total MI score p = .97, internal visual MI 
p = .58, external visual MI p = .75, kinesthetic MI p = .71; 
external focus: Total MI score p = .76, internal visual MI 
p = .97, external visual MI p = .39, kinesthetic MI p = .54). 
There were no associations between MI total score or its 
subscales with performance time during any focus condi-
tions (control: Total MI score p = .28, internal visual MI 
p = .56, external visual MI p = .94, kinesthetic MI p = .77; 
internal focus: Total MI score p = .26, internal visual MI 
p = .23, external visual MI p = .56, kinesthetic MI p = .32; 

external focus: Total MI score p = .17, internal visual MI 
p = .78, external visual MI p = .36, kinesthetic MI p = .94). 
There were no associations between MI total score or its 
MI subscales with aiming trace speed during any focus 
conditions (control: Total MI score p = .87, internal vis-
ual MI p = .88, external visual MI p = .07, kinesthetic MI 
p = 1.0; internal focus: Total MI score p = .60, internal 
visual MI p = .18, external visual MI p = .36, kinesthetic 
MI p = .79; external focus: Total MI score p = .69, internal 
visual MI p = .40, external visual MI p = .09, kinesthetic 
MI p = .33).

Repeated measures moderation analyses
Shot accuracy
Neither total MI score (p range = 0.31 − 0.73) nor any 
of the three subscales (internal visual MI p range = 0.32 
− 0.99; external visual MI p range = 0.34 − 0.84; kines-
thetic MI p range = 0.10 − 0.37) moderated differences in 
shot accuracy between attentional focus condition.

Performance time
Neither total MI score (p range = 0.33 − 0.91) nor any 
of the three subscales (internal visual MI p range = 0.63 

Fig. 1  Mean and standard error (SE) of shot accuracy during different attentional focus conditions. As demonstrated by the * sign, participants had 
more accurate shots during control relative to the internal focus condition
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Fig. 2  Mean and standard error (SE) of performance time during different attentional focus conditions. As demonstrated by the * sign, participants 
had longer performance time during external relative to the internal focus, and control condition. In addition, performance time was longer during 
internal focus relative to control condition

Fig. 3  Mean and standard error (SE) of aiming trace speed during different attentional focus conditions. Although the effect of attentional focus 
conditions on aiming trace speed was significant, pairwise comparisons failed to identify the location of effect
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− 0.93; external visual MI p range = 0.58 − 0.84; kines-
thetic MI p range = 0.07 − 0.62) moderated differences 
between foci of attention and performance time.

Aiming trace speed
Neither total MI score (p range = 0.69 − 0.70) nor any 
of the three subscales (internal visual MI p range = 0.36 
− 0.79; external visual MI p range = 0.47 − 0.94; kines-
thetic MI p range = 0.27 − 0.75) moderated differences 
between foci of attention and aiming trace speed.

Discussion
In the present study, we investigated if MI and its sub-
scales modulate cognitive control of perceptual and 
motor functions under different attentional focus con-
ditions. To evaluate perceptual and motor outcomes, 
we measured movement time, shot accuracy, and move-
ment stability (i.e., aiming trace speed) during different 
attentional focus conditions. Based on several lines of 
research, we expected that individual differences in MI 
would play a crucial modulating role in cognitive control 
of both perceptual and motor performance. Our find-
ings however failed to show any modulating role for MI. 
We nevertheless observed that attentional focus affected 
perceptual and motor outcomes measured in this study. 
More particularly, an internal focus resulted in less accu-
rate shots than control focus. In addition, movement 
time was shorter during control relative to both internal 
and external focus, whereas an external focus resulted in 
longer movement times than other attentional foci.

Several attentional focus hypotheses, including the 
constrained-action hypothesis and self-invoking trig-
ger hypothesis, have previously suggested that an inter-
nal focus hinders perceptual and motor functions due 
to controlled processing that interferes with automatic 
performance [22, 53, 54]. Instead, it has been suggested 
that an external focus improves performance relative to 
an internal focus by invoking more automatic and more 
reflexive (faster) adjustments [22]. Our findings partially 
(but not fully) supported these hypotheses as the internal 
focus was associated with less accurate shots with longer 
movement times only compared to control focus condi-
tion. Indeed, while shot accuracy during the external 
focus was not different than the internal focus, the exter-
nal focus was associated with longer movement times 
(i.e., extended cognitive processing) than the internal 
and control focus – a finding that seems contrary with 
previous reports and the constrained-action hypothesis 
[19]. While it is difficult to explain why an external focus 
resulted in longer movements compared to other condi-
tions, it may be attributed to task difficulty and skill level. 
Although the present task was a standard shooting task, 
it may be considered too difficult for our inexperienced 

individuals as they had to shoot towards a standard, yet 
relatively small bulls-eye (11.5 mm diameter) from a dis-
tance of 10 m. Prior literature proposed a hypothesis that 
suggests overly difficult tasks (i.e., tasks with high index of 
difficulty) do not allow for beneficial adoption of superior 
cognitive strategies such as an external attentional focus 
[55], possibly due to imposing information overload from 
doing difficult tasks [56]. Although Yamada et al. (2022) 
failed to fully support their hypothesis, other studies also 
suggest that task difficulty could be a potential modulator 
of attentional focus effects on motor behavior, with low 
or medium difficulty tasks ideal for achieving beneficial 
performance and learning outcomes when adopting an 
external attentional focus strategy [57–60]. Our study, 
along with previous findings, highlight the importance of 
considering task difficulty in future investigations explor-
ing the role of attentional focus on motor performance.

Given an external focus did not facilitate our partici-
pants’ accuracy while increasing their performance time, 
alternative explanations are warranted given the extant 
literature on this topic (external focus broadly superior 
for motor performance; Wulf 2013). For instance, dur-
ing control processes of goal-directed aiming tasks, suc-
cessful visual processing is necessary to achieve desired 
movement accuracy [61]. Future studies may want to 
quantify visual processing ability and performance (e.g., 
eye tracking) to isolate its relative influence on the rela-
tionship between movement time and performance 
accuracy under different attentional focus conditions. In 
addition, increased movement time during both inter-
nal and external attentional focus conditions relative to 
control focus condition may be attributed to increased 
perceptual processing (cognitive processing) needed to 
process additional attentional verbal cues (either inter-
nal or external focus cues). Prior studies show that the 
number of attentional verbal cues may increase cogni-
tive workload [51] and hinder skilled motor performance 
[62].

Our study failed to provide support for the suggestion 
that perception is cognitively controlled by means of 
mental imagery [11]. Therefore our findings contradict 
the suggestion that MI should be applied to attentional 
focus strategies [29]. Our findings are also in contrast to 
several recent works which investigated the role of MI on 
motor behavior during different attentional focus condi-
tions. Prior works mainly suggested that performance is 
greater when visual MI dominant individuals perform a 
task under an external focus [38, 41, 44], whereas indi-
viduals with high kinesthetic MI dominance benefit from 
adopting an internal relative to an external focus strategy 
[38, 39, 42, 43]. In this particular, it has been suggested 
that adopting an optimal (congruent) attentional strat-
egy (i.e., an internal focus for individuals with higher 
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kinesthetic MI dominance and an external focus for indi-
viduals with higher visual MI dominance) may enhance 
neural efficiency by reducing neural activity of parietal 
and frontal brain regions [43]. We consider our findings 
important as our data indicates that attentional strate-
gies affect perceptual and motor outcomes independent 
of novice 10-m air-pistol shooters’ baseline MI abilities, 
ultimately suggesting a unique contribution for attention 
in cognitive control of perception and action. Neverthe-
less, the lack of moderating effects could be due to several 
reasons. First, despite including a relatively large number 
of participants in the study, our participants were not 
particularly poor at motor imagery, as our participants 
had self-reported MI scores that were relatively higher 
than a score that can be deemed as poor imagery abil-
ity. In the MIQ-3, a score of 4 is neutral (neither easy nor 
hard), and individuals that score 3 or lower are those who 
report difficulty in MI ability. As our descriptive results 
show, our participants had mean MI scores (includ-
ing MI modalities and perspectives) that are considered 
relatively high (range from 5.81 to 5.87). However, rather 
than considering this as a methodological limitation 
of the present work, we consider this a unique finding 
as individuals in our study had less difficulty imagining 
their action from different modalities and perspectives, 
compared with previous works reporting relatively high 
MI abilities [45, 63–65]. For example, McNeill et al. [64] 
conducted a study to investigate if good kinesthetic MI 
participants [64] exhibit greater performance improve-
ments than poor kinesthetic MI participants following an 
MI intervention and failed to reveal between-group dif-
ferences in mean golf putting accuracy. The lack of differ-
ences has been attributed to the classification method as 
McNeill et al. [64] considered the kinesthetic MI median 
scores less than 6 as ‘poor’ kinesthetic imagers, while the 
score 6 is a relatively high score on the 7-point MIQ-3 
Likert-type scale [66]. Therefore, our study suggests that 
MI differences in typical individuals cannot modulate 
performance, probably because individual differences in 
MI ability were not of sufficient magnitude or variabil-
ity. Another possible explanation for our current find-
ings may be that individuals with high MI scores choose 
attentional focus strategies independently from their MI 
traits. That is, since our participants had relatively high 
MI scores in all MI subscales, their relatively high ‘overall’ 
MI abilities allowed for greater flexibility to choose atten-
tional focus strategies. In other words, while MI modera-
tion effects could result from lacking certain MI ability, 
high overall MI abilities may allow individuals to use 
attention in a more flexible manner. Second, although, 
like many previously published pistol-shooting-related 
work [51, 67, 68], our measure of shot accuracy may not 
have been granular enough to detect subtle and small 

changes in motor performance (see Fischman, 2015). 
Adding complementary measures, such as ‘performance 
consistency’ may better detect performance outcomes 
using attentional focus and MI manipulations. Third, 
We should also note that our participants were novices, 
and therefore their little experience of physically execut-
ing the imagined action may have resulted in inefficient 
(unorganized) neurocognitive processing [69], that as a 
consequence, may have hindered the role of MI on motor 
performance. Another possibility because attentional 
foci and MI failed to moderate performance accuracy 
may be due to excessive task difficulty. As our results 
demonstrate, mean shooting accuracy was relatively low 
whereas standard deviation of shooting accuracy was rel-
atively large. Novices’ performance was understandably 
poor and highly variable, and thus potentially less modifi-
able by attentional focus and/or MI. Future studies may 
want to replicate this work by adding a group of skilled 
or expert individuals to their study. Fourth, the MIQ-3 
used in our current study does not measure some impor-
tant aspects of mental imagery such as mental imagery 
vividness- a diagnosis tool for identifying individuals 
with extreme imagery conditions [70–72] which affects 
other cognitive functions such as memory and attention 
[73–77]. Furthermore, more than one MI ability may 
interact to moderate attentional focus effects on motor 
performance. Therefore, future work should consider dif-
ferent MI abilities additively and uniquely influence cog-
nitive control of perception under different attentional 
focus strategies. Fifth, and finally, while MI may be action 
specific [78], the MIQ-3 evaluates individuals’ ability to 
mentally imagine very basic actions that may not predict 
individuals’ ability or tendency in shooting.

Our study has some limitations that should be 
acknowledged. We used a laboratory-based task that 
may reduce the complexity of what occurs during real 
situations [79]; therefore, other studies should investi-
gate how MI and attentional focus affect performance 
in real, highly demanding situations. In addition, 
although we adapted a previously published approach 
to direct participants’ attention during an internal 
focus, we acknowledge that it may not be the most 
precise method. In particular, we asked participants 
to “focus on keeping your hand steady.” Although this 
instruction is an internal focus instruction, it may cause 
visual dominant imagers to focus visually on their hand 
to see their hand mentally rather than ‘feel’ it. Future 
studies should consider additional instructional manip-
ulations, such as directing individuals’ focus to more 
sensory-related factors like pressure, or force pro-
duced by body during a particular motor task to extend 
the current work. Additionally, although we kept the 
number of trials in each condition relatively small to 
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minimize the potential of order effects (see the meth-
ods section for more details), it is not clear whether 
this methods decision ultimately influenced any of the 
performance outcomes. Future work may want to repli-
cate this study by fully counterbalancing all three study 
groups. We also did not use manipulation checks or 
interviews to measure participants’ adherence to our 
instructions. While lack of manipulation checks could 
potentially limit our findings, previously published 
attentional focus studies have shown high levels of 
adherence to similar attentional focus instructions [41, 
80–86]. Additionally, several individual factors such as 
stress, arousal and anxiety were not controlled in this 
study which warrants caution in broad interpretation of 
our findings. Finally, relatively few number of females 
(about 31% of participants) volunteered to participate 
in this study, thus limiting the generalizability of the 
study findings to males.

Conclusion
In conclusion, this study showed that participants’ self-
reported baseline MI and its subscales do not moderate 
attentional focus effects on novices’ air-pistol shooting 
performance accuracy, performance time, and aiming 
trace speeds. These findings may suggest that individu-
als’ MI does not affect cognitive control of perceptual and 
motor functions. However, an internal focus may reduce 
shot accuracy relative to control focus. Importantly, an 
external focus may result in an increased performance 
time to ensure the task goal. The study highlights the 
importance of future studies to enhance our theoretical 
and practical knowledge regarding mental imagery, and 
attentional focus in sport science and rehabilitation.
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